A Hybrid Schrödinger/gaussian Beam Solver for Quantum Barriers and Surface Hopping
نویسندگان
چکیده
In this paper, we propose a hybrid method coupling a Schrödinger solver and the Gaussian beam method for the numerical simulation of quantum tunneling through potential barriers or surface hopping across electronic potential energy surfaces. The idea is to use a Schrödinger solver near potential barriers or zones where potential energy surfaces cross, and the Gaussian beam method–which is much more efficient than a direct Schrödinger solver– elsewhere. Buffer zones are used to convert data between the Schrödinger solver and the Gaussian beam solver. Numerical examples show that this method indeed captures quantum tunneling and surface hopping accurately, with a computational cost much lower than a direct quantum solver in the entire domain.
منابع مشابه
ABCD matrix for reflection and refraction of laser beam at tilted concave and convex elliptic paraboloid interfaces and studying laser beam reflection from a tilted concave parabola of revolution
Studying Gaussian beam is a method to investigate laser beam propagation and ABCD matrix is a fast and simple method to simulate Gaussian beam propagation in different mediums. Of the ABCD matrices studied so far, reflection and refraction matrices at various surfaces have attracted a lot of researches. However in previous work the incident beam and the principle axis of surface are in parallel...
متن کاملA numerical study of the Gaussian beam methods for one-dimensional Schrödinger-Poisson equations
As an important model in quantum semiconductor devices, the Schrödinger-Poisson equations have generated widespread interests in both analysis and numerical simulations in recent years. In this paper, we present Gaussian beam methods for the numerical simulation of the one-dimensional Schrodinger-Poisson equations. The Gaussian beam methods for high frequency waves outperform the geometrical op...
متن کاملGiant Goos-Häenchen Shift of a Gaussian Beam Reflected from One-Dimensional Photonic Crystals Containing Left-Handed Lossy Metamaterials
We perform a theoretical investigation on the Goos-Häenchen shift (the lateral shift) in one-dimensional photonic crystals (1DPCs) containing left-handed (LH) metamaterials. The effect was studied by use of a Gaussian beam. We show that the giant lateral displacement is due to the localization of the electromagnetic wave which can be both positive and negative depending on the incidence angle o...
متن کاملCoupling of Gaussian beam and finite difference solvers for semiclassical Schrödinger equations
In the semiclassical regime, solutions to the time-dependent Schrödinger equation are highly oscillatory. The number of grid points required for resolving the oscillations may become very large even for simple model problems, making solution on a grid, e.g., using a finite difference method, intractable. Asymptotic methods like Gaussian beams can resolve the oscillations with little effort and ...
متن کاملQuantization via hopping amplitudes: Schrödinger equation and free QED
Schrödinger’s equation with scalar and vector potentials is shown to describe “nothing but” hopping of a quantum particle on a lattice; any spatial variation of the hopping amplitudes acts like an external electric and/or magnetic field. The main point of the argument is the superposition principle for state vectors; Lagrangians, path integrals, or classical Hamiltonians are not (!) required. A...
متن کامل